#!/usr/bin/env gnuplot # Plasma Optics of Electron Gas # 2004-06-25 NISHIMATSU Takeshi # # At #1# below, the dielectric function epsilon(omega) of the # electron gas is plotted as a function of frequency omega. (See # C. Kittel: "Introduction to Solid State Physics" 7th edition # Chap. 10.) # # PROBLEM # a) Plot real and imaginary parts of the complex refractive index # N(omega) = epsilon(omega)**0.5 # at #2# below. Assume that epsilon(inf)=20.0. # b) Explain why the reflectivity coefficient r(omega) can be # written with N(omega) as # N(omega) - 1 # r(omega) = -------------- . # N(omega) + 1 # c) Plot the reflectance R(omega) = |r(omega)|**2 at #3# below. # d) Compare the 3rd plot with Fig. 8 in W. G. Spitzer and # H.Y. Fan: Phys. Rev. vol.106 (1957) pp.882-890. # e) Around omega/omega_p = 1+, Re(N(omega)) becomes less than # unity! Is it OK? # # How to execute this script: # execute% gnuplot reflectance.gp # preview% gv reflectance.ps # print % lpr reflectance.ps ## set terminal postscript portrait enhanced color solid 22 set output "reflectance.ps" set multiplot e_inf=20.0 epsilon(x)=e_inf*(1.0-1.0/x**2) set grid set lmargin 9 set format x "%.1f" set format y "%.1f" set xrange [0:2.2] set size 1.0,0.333 set origin 0.0,0.667 set title 'Plasma Optics of Electron Gas {/Symbol e(\245)=20.0}' set nokey set ylabel '{/Symbol e(w)/e(\245)}' set yrange [-2:1] #1# plot epsilon(x)/e_inf lw 3 set origin 0.0,0.333 set notitle set key 0.7, 2.0 samplen 1 set ylabel "complex refractive\n index {/Times-Italic N}{/Symbol (w)}" set yrange [0:5] #2# plot imag(exp(sqrt(-1)*x)**0.5) title 'Im({/Times-Italic N}{/Symbol (w)})' lw 3,\ real(exp(sqrt(-1)*x)**0.5) title 'Re({/Times-Italic N}{/Symbol (w)})' lw 3 set origin 0,0 set nokey set xlabel '{/Symbol w /w}_p' set ylabel 'Reflectance' set yrange [0:1.01] #3# plot abs(x-1) lw 3